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ABSTRACT 
Engineering feedstock supply systems that deliver affordable, 
high-quality biomass remains a challenge for the emerging 
bioenergy industry. Cellulosic biomass is geographically 
distributed and has diverse physical and chemical properties. 
Because of this feedstock supply systems that deliver cellulosic 
biomass resources to biorefineries require integration of a broad 
set of engineered unit operations. These unit operations include 
harvest and collection, storage, preprocessing, and 
transportation processes. Design decisions for each feedstock 
supply system unit operation impact the engineering design and 
performance of the other system elements. These 
interdependencies are further complicated by spatial and 
temporal variances such as climate conditions and biomass 
characteristics. This paper develops an integrated model that 
couples a SQL-based data management engine and systems 
dynamics models to design and evaluate biomass feedstock 
supply systems. The integrated model, called the Biomass 
Logistics Model (BLM), includes a suite of databases that 
provide 1) engineering performance data for hundreds of 
equipment systems, 2) spatially explicit labor cost datasets, and 
3) local tax and regulation data. The BLM analytic engine is
built in the systems dynamics software package PowersimTM. 
The BLM is designed to work with thermochemical and 
biochemical based biofuel conversion platforms and 
accommodates a range of cellulosic biomass types (i.e., 
herbaceous residues, short- rotation woody and herbaceous 
energy crops, woody residues, algae, etc.). The BLM simulates 
the flow of biomass through the entire supply chain, tracking 
changes in feedstock characteristics (i.e., moisture content, dry 
matter, ash content, and dry bulk density) as influenced by the 
various operations in the supply chain. By accounting for all of 

the equipment that comes into contact with biomass from the 
point of harvest to the throat of the conversion facility and the 
change in characteristics, the BLM evaluates economic 
performance of the engineered system, as well as determining 
energy consumption and green house gas performance of the 
design. This paper presents a BLM case study delivering corn 
stover to produce cellulosic ethanol. The case study utilizes the 
BLM to model the performance of several feedstock supply 
system designs. The case study also explores the impact of 
temporal variations in climate conditions to test the sensitivity 
of the engineering designs. Results from the case study show 
that under certain conditions corn stover can be delivered to the 
cellulosic ethanol biorefinery for $35/dry ton. 

INTRODUCTION 
 Engineering feedstock supply systems that deliver 
affordable high-quality biomass remains a challenge for the 
emerging bioenergy industry. The focus for the industry has 
been the development of conventional biomass feedstock 
supply systems that incorporate existing technologies and 
equipment with limited engineering and adaptation for 
dedicated bioenergy feedstock resources and biomass 
infrastructure [1, 2]. These system designs can in many cases 
provide the lowest delivered cost of biomass resources to a 
biorefinery. However, conventional systems provide limited 
ability to control critical feedstock quality parameters [3]. 
Because of this, abrupt variations in feedstock characteristics 
(i.e. moisture content, ash content, etc) as the result of a 
drought or other environmental conditions could challenge the 
economic
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 Figure 1. BLM Framework. 

viability of a biorefinery. Feedstock supply system design tools 
that allow decision makers to explore the impacts and 
sensitivities created by system design decisions are important to 
support biorefinery investments [4].  

Previous work in feedstock supply system modeling involved 
mathematical programing approaches including linear 
programming to develop optimization models that are relevant 
to a variety of cases, but are subject to the availability of data 
[5, 6 ,7]. Additionally, simulation models have also been 
developed using object oriented programming and discrete 
event simulation [8, 9,10], but tend to generalize operations. 
This paper develops an integrated model that quantifies the 
impacts of feedstock supply system designs on the cost and 
quality of the delivered biomass.  The integrated model called 
the Biomass Logistics Model (BLM) simulates the broad set of 
parameters required to assess the engineering performance of a 
supply system design. BLM also allows the user to investigate 
important sensitivities and uncertainties that are currently a 
primary source of feedstock risk for the emerging biorefining 
industry.   

METHODOLOGY 

Biomass Logistics Model Description 
The Biomass Logistics Model was developed by the Idaho 

National Laboratory (INL) to estimate delivered feedstock cost 
and energy consumed for biomass feedstock supply systems. 
The model structure for the BLM is shown in Fig. 1. The BLM 
incorporates information from a collection of databases that 
provide 1) engineering performance data for hundreds of 
equipment systems, 2) spatially explicit labor cost datasets, and 
3) local tax and regulation data. The BLM analytic engine is
built in the systems dynamics software package PowersimTM. 
The BLM is designed to work with thermochemical and 
biochemical based biofuel conversion platforms and 
accommodates a range of cellulosic biomass types (i.e., 

herbaceous residues, short- rotation woody and herbaceous 
energy crops, woody residues, algae, etc.) [11,12]. The BLM 
simulates the flow of biomass through the entire supply chain, 
tracking changes in feedstock characteristics (i.e., moisture 
content, dry matter, ash content, and dry bulk density) as 
influenced by the unit operations in the supply chain. By 
accounting for all of the equipment that comes into contact with 
biomass from the point of harvest to the throat of the 
conversion facility and the change in characteristics, the BLM 
evaluates economic performance of the engineered system, as 
well as determining energy consumption and green house gas 
performance of the design.  

Model Structure 
The BLM is comprised of a series of sub-models to 

organize calculations and information shown in Fig 2. A 
graphical user interface allows the navigation from one sub-
model to the next where individual input screens allow users to 
adjust model assumptions (i.e., feedstock variety, equipment 
type, operating parameters etc.) These assumptions greatly 
impact supply system costs so it is important to be able to 
easily access and modify these inputs. The BLM uses the SQL 
data management engine to output calculated data allowing 
results to be shared and compared using graphs and charts.  

The first set of sub-models, tracks the potential locations of 
biomass throughout the feedstock logistics supply system. 
Currently, these locations and subsequent sub-models include: 

• a biomass production location (i.e., fieldside or stand)

• a primary intermediate location (i.e., depot)

• a secondary intermediate location (i.e., terminal)

• a conversion facility location (i.e., biorefinery,

biopower plant, etc.). 
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Figure 2. BLM Sub-model Structure. 

Using locations as an organization category for the top level of 
sub-models is an accounting tool to avoid accidental 
redundancy in logistics system setup. 

The next set of sub-models includes the major supply 
system unit operations: i.e., harvest and collection, storage, 
transportation, preprocessing, and handling and queuing at the 
biorefinery. Design decisions for each supply system unit 
operation impact the engineering design and performance of the 
other system elements. Because of this it is important to 
understand each unit operation and its connection with the rest 
of the system.  

Harvest and collection operation encompasses all activities 
required to gather and remove feedstock from the place of 
production. The harvest method depends on the specific 
biomass feedstock variety. For example, an herbaceous 
feedstock (i.e., corn stover, switchgrass, wheatstraw, etc.) 

harvest system could include a combine, rake, baler, 
windrower, and or forage chopper (see Figure 1), while a 
woody feedstock (i.e., thinnings, slash, pulpwood, etc.) harvest 
system could include a feller buncher, chainsaw system, or 
forage harvester. Harvest systems for row crops and perennial 
crops have a limited temporal window when they can operate 
each year due to the growth cycles of the crops. This window 
often changes from year to year due on environmental 
conditions. A constantly changing harvest window puts 
significant stress on the harvest and collection operations 
within the supply system. Collection involves moving 
harvested biomass to a centralized location, such as a field side 
stack or a landing deck. Potential collection equipment includes 
roadsiders, loaders, skidders, and cable systems. Like harvest, 
collection also only occurs during a specified window where 
optimal conditions can be achieved to maximize biomass 
quality and reduce material loss. 
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Preprocessing includes any physical or chemical activity 
that changes the material, such as chipping, grinding, drying, 
and densification. Preprocessing may also include necessary 
auxiliary operations, such as dust collection and conveyors. In 
general, the goal of preprocessing is to increase the quality and 
uniformity of biomass in order to decrease transportation and 
handling costs further along the supply chain. For a 
conventional biomass supply system, the preprocessing 
operation is generally inside the gate of the conversion facility. 

Storage involves stockpiling material to either: (1) provide 
an adequate lead time to more expensive processes 
downstream; (2) accumulate appropriate quantities making 
movement more economical; or (3) minimize the footprint and 
storage infrastructure at the refinery. Storage is mainly 
comprised of infrastructure, which can include cement, gravel 
or asphalt pads, silos, storage bins, and tarps. Since harvest 
usually occurs during a specified window of time, storage is 
necessary to maintain an adequate and constant flow of biomass 
to the conversion facility. 

Transportation includes all processes involved in the 
movement of material from many local locations to a 
centralized location, such a biorefinery. The distinction 
between collection and transportation is that collection gathers 
highly dispersed biomass from a field or stand and moves it to a 
local location and requires specialized machinery capable of 
off-road navigation, while transportation takes advantage of 
existing roadways, railways, and waterways. Transportation 
includes processes such as loading, trucking, rail transport, and 
unloading. 

Handling and Queuing involves processes required to 
move biomass material from a local storage location inside the 
gates at the biorefinery to the throat of the conversion. Surge 
bins, conveyors, dust collection, and miscellaneous equipment 
could be included in the Handling and Queuing operation. 

With the exception of the Harvest and Collection 
operation, all location sub-models include all five unit 
operation sub-models. Harvest and Collection operations are 
only included in the biomass production sub-model for obvious 
reasons. Next, within the unit operation sub-models, equipment 
sub-models organize information specific to each piece of 
equipment. For example within the preprocessing sub-model, 
equipment sub-models include: several thermal treatment sub-
models, grinding sub-models, a densification sub-model, a 
chemical treatment sub-models, a loader sub-model, and 
miscellaneous equipment sub-models. For storage, the 
equipment specific sub-models include; a loader sub-model and 
a special infrastructure sub-model that involves additionally 
items like concrete pads, pole-barns, silos, liquid storage, 
tarping and wrapping. Within these sub-models, relationships 
based on on-going research connect performance with 
feedstock characteristics, allowing for a more predictive 
approach to feedstock supply system design. 

Next within the unit operations, parallel to the equipment 
sub-models are cost sub-models.  The cost sub-model 
encompasses several specific cost-models including: 

• labor  cost sub-model

• insurance and housing cost sub-model

• interest and depreciation cost sub-model

• repair and maintenance cost sub-model

• fuel use cost sub-model

• material cost sub-model

These specific cost sub-models encompass established and 
generally accepted equations for calculating cost associated 
with each activity. For example, energy requirements are 
calculated in the fuel use cost sub-model, as a function of 
performance from the horsepower rating of the equipment 
involved. All costs are expressed in terms of final product in 
the fuel-use cost specific. Additionally, if a implement and 
power system operation is used, like in the case of a baler and 
tractor system, an additional series of cost specific sub-models 
are used including: 

• implement labor  cost sub-model

• implement insurance and housing cost-submodel

• implement interest and depreciation cost sub-model

• implement repair and maintenance cost sub-model

• implement fuel use cost sub-model

• implement material cost sub-model

The output of both the power system cost specific sub-
models and the implement cost system sub-models are 
combined in the overall cost sub-model to give the combine 
cost, implement and power system cost for that piece of 
equipment. If a particular piece of equipment does not utilize an 
implement, like a self-propelled baler, then the implement cost 
sub-models do not contribute, only the power system sub-
model. 

Because the BLM is an engineering design tool, the 
general use case is to setup the required feedstock supply 
system by selecting the volume and quality characteristics of 
feedstock required to be delivered to the biorefinery. From 
these initial assumptions, unit processes are chosen and the 
required configurations are calculated. For example, the 
number of machines necessary at each process is determined 
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using an assumed operating window for periodic operations, 
and an annual operating window for continuous processes, like 
preprocessing then, given a manufacturer specific throughput 
discounted based on performance factors and on-going 
research, the number of machines required, percent machine 
utilization, cost and fuel consumed are calculated. 

Finally, the BLM simulates a real supply system, tracking 
biomass throughout the supply chain. As biomass moves 
through the system, cost is incurred and value is added to the 
biomass through quality improvements and location of 
material. Therefore, material lost further into the system has a 
higher economic consequence. To capture the loss of value 
resulting from the material lost, a dry matter loss factor is 
applied to the cost. This dry matter loss factor compensates for 
the cost of producing material that is effectively lost, as it 
cannot be used in the conversion process. 

Additionally, some unit operations modify feedstock 
characteristics (i.e., particle size, moisture content, ash content, 
bulk density, etc.), and these changes can have a large effect on 
downstream logistics. For example, an increase in dry matter 
density can have a significant impact on transportation and 
handling costs, as these costs can be volume-limited requiring 
more or less trips to haul a specified amount of biomass. The 
BLM tracks material format and quality changes throughout the 
supply chain and incorporates experimental relationships from 
work performed at INL and partnering research entities 
whenever possible. As the biomass industry develops, quality 
specification and material standards for biomass feedstocks and 
their impact on logistics will be pivotal. Meeting material 
specifications ensures that conversion processes receive a 
consistent feedstock with appropriate properties to balance 
feedstock cost and conversion optimization. 

The unique model structure of the BLM allows the 
sequence of operations and location of these operations to be 
investigated. For example, some biomass feedstock supply 
chain designs move preprocessing operations to the front of the 
supply chain (i.e., field or depot), while conventional designs 
leave preprocessing until inside the conversion facility gates. 
These different locations restrict fuel types (i.e., diesel, 
electricity, waste heat, etc.), as well as some machine capacities 
and efficiencies and have great impacts on system design and 
cost. 

Finally, the BLM has the capability to perform sensitivity 
analysis on specific variables. Sensitivity analysis establishes 
how resistant the calculated cost and energy consumption 
values are to variable assumptions. Operational characteristics, 
such as speed, efficiency, and throughput are highly variable 
and are rarely provided by the manufacturer due to variable 
field conditions, material characteristics, and operator skills. 
While experimental data and expert knowledge are used, these 

assumptions may not be representative of large-scale systems. 
Testing the model to see how sensitive the final results are to 
changes in the assumed value is helpful to identifying 
parameters that have a high impact. 

To perform a sensitivity analysis, select parameters are 
assigned a probability distribution (typically normal and 
uniform), and a high, low, and average value. Then Monte 
Carlo sampling methods randomly assign values within the 
chosen distributions for the select parameters. This is 
performed 1000 times and the results are compared to test the 
variability in the final results. Finally, the sensitivity 
functionality in the BLM is used to generate a variety of figures 
to illustrate the impact of particular variables, including 
histograms, tornado diagrams, and spider diagrams.  Examples 
of sensitivity analysis will be shown as a result of the case 
study discussed below. 

RESULTS AND DISCUSSION 

Case Study 
To demonstrate the application of BLM, the following 

conventional biomass feedstock supply systems scenario was 
considered. As shown in Fig 3. and Fig 4., corn stover is 
harvested in Iowa using a combine and is allowed to passively 
dry in a windrow. After reaching 12% moisture content, the 
corn stover is baled. The bales are collected and stacked at the 
edge of the field until needed by the biorefinery. From the field, 
the bales are transported to the biorefinery where it is ground 
then used to produce cellulosic ethanol.  

Figure 3. Case Study Conventional Biomass Feedstock 
Supply Stystem. 
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Given this scenario, a biorefinery could be designed to handle 
feedstock, however, consider the 2009 and 2010 harvest years 
below.  Figure 5 illustrates the average bale moisture for all 
corn stover harvested in Iowa for the 2009 and 2010 harvest 
seasons. While the 2010 harvest averaged bale moistures 
around 12%, the 2009 harvest averaged bale moistures of about 
35%, a difference of 23% moisture [12]. Using the same 
scenario as described before, but varying the moisture content 
from 12% to 35%, will have substantial impact on the feedstock 
logistics design as shown by comparing the cost and energy 
summary for the 12% and 35% moisture case.  Table 1 and 
Table 2 summaries these costs and energy consumptions caused 
by increasing bale moisture and handling more moisture 
throughout the system. Additional spoilage caused by added 
moisture was not considered for this study for simplicity. 
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Table 1. Cost and Energy Consumption for Scenario with 
12% Harvest Moisture. 

Cost and Energy Summary ($ton-1, MBTUton-1) 

Operation Total Cost 
Difference 

Energy 
Consumed 
Difference 

Harvest 11.97 71 
Collection 3.15 39 
Storage 1.37 13 
Transport 7.36 117 
Preprocessing 5.56 34 

Handling/ 
Queuing 

0.10 3 

Total 30.28 277 

Table 2. Cost and Energy Consumption for Scenario with 
35% Harvest Moisture. 

Cost and Energy Summary ($ton-1, MBTUton-1) 

Operation Total Cost Energy 
Consumed 

Harvest 12.55 71 
Collection 3.15 40 
Storage 3.55 13 
Transport 8.36 134 
Preprocessing 10.55 36 

Handling/ 
Queuing 

0.10 3 

Total 38.26 297 

Upon inspection of Table 1 and Table 2, increasing bale 
moisture has an impact on harvest, storage, transportation, and 
preprocessing costs with an overall cost impact of 8$/DMton. 
Preprocessing experiences the greatest cost impact of almost 
3$/DMton.  

Next, consider the above scenario,12% moisture, but instead of 
corn stover harvested in Iowa, move to Georgia. Relocating 
from the “corn belt” has significant consequences to design. 
For example, crop yields and draw area substantially change 
moving away from the heavily concentrated and highly 
productive Midwest. In Georgia, yields are lower than Iowa and 
density of corn per area is less due to other crops being grown 
[13]. This variation could also be as a surrogate way to evaluate 
the influence drought may have on a system as drought usually 
result in lower yields and less material available due to severe 

environmental conditions. Table 4 shows the impact a low yield 
case when compared to the original Iowa scenario case in Table 
1. Upon inspection, a lower yield appears to have the most
impact on the harvest. 

Table 4. Cost and Energy Consumption for Scenario with 
lower yield. 

Cost and Energy Summary ($ton-1, MBTUton-1) 

Operation Total Cost Energy 
Consumed 

Harvest 14.97 92 
Collection 4.12 45 
Storage 1.37 13 
Transport 7.86 120 
Preprocessing 5.56 34 

Handling/ 
Queuing 

0.10 3 

Total 33.98 307 

Sensitivity Analysis 
Finally, if insufficient or unrealistic data is available, sensitivity 
analysis could also be used to assess feedstock supply system 
design decisions. For example, fuel prices, the cost of diesel, 
electricity, and natural gas, are especially hard to predict and 
historic trends may not realistically encompass all risks in 
recent markets. Sensitivity analysis can demonstrate possible 
variances due to changes in these fuel prices. Consider the 
following variable ranges and distributions shown in Table 6, 
and the original case study outlined in Fig 3. and Fig 4.  

Table 6. Sensitivity Analysis Variables Ranges 

Variable Min Max Peak 

Electricity 
Price($kWhr-1) 

0.04 0.12 0.06 

On-Road Diesel 
Price ($ gal-1) 

1.75 3.50 3.00 

Off-Road Diesel 
Price ($ gal-1) 

1.50 3.25 2.75 

Given the constraints in Table 6, sensitivity analysis shows that 
actual cost could vary between 29.40$/DMton to 38.90 
$/DMton. Figure 6 shows the affect sensitivity analysis has on 
the total cost of the supply system. Note that the initial 
feedstock logistics cost, Table 1, was calculated to be 30.28 
$/DMton.  
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CONCLUSIONS 
Quantifying and designing for the uncertainties within a 
biomass feedstock supply system can have significant impacts 
on the economic viability of a biorefinery system. 
Understanding uncontrollable variability, like environmental 
factors (bale moisture, and crop yield) and their impact to 
feedstock logistics is necessary in order to build robust supply 
system designs capable of withstanding a variety of unknowns. 
This work presented an integrated model called the Biomass 
Logistics Model that has been developed as a means of 
exploring potential variances so that once these uncertainties 
are known; designs can be managed and engineered 
accordingly. The BLM model was applied to a case study of 
conventional corn stover feedstock supply system with 
variances in moisture content, crop yield, and fuel prices. The 
results suggest that the total cost of corn stover feedstock 
logistics varied from 29.40 $/DMton to 38.90 $/DMton 
depending on the variable constraints.  Understanding the 
variability in cost based on unpredictable parameters allows 
more robust designs to be developed. 
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